
Pergamon 
1. Appl. Maths Mechs, Vol. 60, No. 5, pp. 833--838, 1996 

Copyright © 1997 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

PlI: S0021--8928(96)00103-7 0021-.892s¢96 S24.00+0.00 
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The three-dimensional stressed state in the neighbourhood of the tip of a plane semi-infinite crack located at the interface between 
two different kinds of transversely isotropie materials is investigated. Its exact analytic solution is constructed by reducing the 
problem to a Wiener-Hopf matrix equation, the singularity index of the elastic field is found and the stress intensity factors are 
determined. © 1997 Elsevier Science Ltd. All fights re=rved. 

A similar three~imensional problem has previously been studied for the case of isotropic materials 
[1]. Problems on interfacial cracks in anisotropic media have only been investigated in a two-dimensional 
formulation (see, for example, [2, 3]). 

1. Consider an elastic space consisting of two transversely-isotropic homogeneous half-spaces z I> 0 
and z <~ 0, hencetorth denoted by the subscripts 1 and 2. Suppose a crack in the form of the half-plane 
{(x,y): x < 0, lY I < **} is located at the interface of the media z = 0 and that a self-balanced normal 
load p(x,y), which is symmetric about the x axis, is applied to the crack edges. There is ideal mechanical 
contact between the materials on the remaining part of the boundary. 

Assuming that the isotropy planes of the materials of the half-spaces are parallel to the plane of the 
crack and that there are no bulk forces, the problem reduces to solving the equilibrium equations in 
the displacements [4] subject to the following conditions on the boundary z = 0 

x~  =x~u =0, a~i=-p(x,y)  (1.1) 

( j= l ,2 ;  x<O, lyl<**) 

x,za=xxz2, x,zl=x,~2, azj=oz2 (1.2) 

ul=u 2, ul=u 2, wl=w 2 (x>0,1yl<~,) (1.3) 

where uj, vj, wj are the displacements along the x, y and z axes and x=j, xy=, a~ are the components of 
the stress tensors. 

In addition, it is necessary to take account of the further requirement that the stresses should decrease 
at infinity and the condition that the potential energy of deformation must be bounded in the 
neighbourhood of the crack tip. 

Applying a two-dimensional Fourier transformation with respect to the variables x and y to the 
equilibrium equations we obtain the following representation of the displacements 

II.j(x,y,z)ll I "  iui( '"'z)ll 
V ~, e-i(kx+rtV)d~ u,(x,y,z)  = ~  I i< , ,z)ll 

wj(x,y,z) - "  IIWj (~,,IJ.,z)~ 

(1.4) 

where 
3 3 

Uj(2k,ll,z)= ~-~=lAjte'-~ik'ttzt, Vj(~.,la,Z)= ~___lAjlpte'-~JtCzt 

. "  2 -tO 
Wj(Z, t t ,Z)=(-I) j~=lAjtcojtqjte '~J ( j= l ,2 )  

(1.5) 
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A#=:Ajk(SL,)£) ' pl=PS=ixl~., p3=_~./11. ~,=(~2+IX2)~ 

') 

(ai2 =otj:g(ct~-f}j) Y~ (k=l,2), oi3 =(C~) I C~))Y~ 

According to [4], the elasticity constants, C0~, of the half-spaces satisfy the inequalities 

C~ll)>O, C~jl)>~ ), C~g)>O, C~33)(C~ll)+~]))>2C~l~ )2 (1.6) 

Henceforth, the single-valued branch of the function -/ = (X 2 + 1.1.:) 1/2 is considered which is 
defined in the complex plane with cuts along the rays (-400, -41 ~t I) and (il 1.1, I, i**) and the positive 
values are taken when g is real. The integration contour Lx in (1.4) is located in the strip -I 1.1, I < 
I m X <  0. 

Thecharacteristic numbers coi~ and 0~2 for different pairs of materials may be assumed to be real or 
complex conjugate quantities. Those of them for which Re o~k > 0 are used in the sums in (1.5). 

Conditions (1.1) and (1.2) enable one to express the constantsAzk in terms of Au,. After this, using 
the mixed boundary conditions (1.1) forj = I and (1.3), we find thatAj3 = 0 and the quantitiesAn and 
A 12 are determined from the following system of coupled integral equations 

(21t) -y2 ~Y[ol i q  (X, IX)+onC2(X, IX)]e -'x'ax = 0 (x < O) 

i 2 
(27t) - ~  ~ ~-[Ct(~.,ix)+C2(~.,ix)]e-'Xrd "£ =-p*(x, ix) (x < O) 

Lx 

(2~t)-~ ~[atCl(~.,ix)+a2C2(Sg,ix)]e-°'Xdg=O ( x > O )  

(1.7) 

where 

= + 
am C(/)(! + q | , . )  C(2)(0021 - 0}22 ) 

= t°a=qt,. + (022q22~21n -¢a021q21~lm 
b,. C(/)(1 + q t .  ) C(2)(0021 _~22)  

l+q21 ' = l+q2  2 

C,,,(k, IX)=C(,~)(I+qI,n)Ao,,(;~,,IX), m=l,2 

p" (x,~t) = (2n) -~ ~p(x,y)e¢Ydy 

We will denote the Fourier transforms with respect to the x and y coordinates of the shear stresses 
x~= and normal stresses o~ on the continuation of the crack by T+(k, IX) and S+(~., IX) and the transforms 
of the displacements of the crack edges ul(x, y, O) - u2(x, y, 0) and wl(x, y, O) - w2(x, y, 0) by U_(Z., IX) 
and W_(X, IX) respectively. The system of coupled integral equations (1.7) then reduces to a Riemann 
matrix problem with a complex variable ~ and a real parameter !.1, 

"D'~(X, IX)F_(X,IX)= F÷(X.,)-QO..,). X~ L x (1.8) 
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G(~,,p.)= g~g31~, g2 H P-(X'l't) 
U (X,p) F_(Z.,p)= W_-(X,p)[' Z. " IT+(X,p)~ 

P-0,,,P) = (2n) -~ ~P'(X.P) e'~dx 

The constant D and the quantities gk (k = 1, 2, 3) which occur in the matrix coefficient of problem (1.8) 
are determined solely by the moduli of elasticity of the materials and have the form (the constant D, 
which is not involved in the subsequent calculations, is omitted) 

I ,11 <=2 II ~,n, n H~2n2 II 
~2 ,, =- ,~-,~ >licit>n, - ~,~ n (1.9) 
g311 fl~,-,1,1 11,~2-~211 
~/<c~i)c~'#, ,lj =~¢, n, =~,: +o,j~, j=l,2 

Only the sums of the characteristic numbers toj, (], n = 1, 2) occur in expressions (1.9), and therefore, 
in spite of the fact that they may be complex, the values ofgk are real for any pair of materials. Moreover, 
it follows from inequalities (1.6) that gl and g2 are positive. We also note that, if the materials of the 
haft-spaces are identical, then g3 = 0, which follows from (1.9). In this case, G(~., p) has a diagonal 
form and, consequently, matrix problem (1.8) decomposes into two scalar problems. 

2. The factoriz~tion of its coefficient matrix is a keyastepin the solution of Eq. (1.8). For this purpose, 
we multiply (1.8) by the constant matrix S = diag(g{, gi ) and, as a result, we obtain 

DR(~.,~t)F_(~.,~) = SF+ (~.,I~)-SQO~,II), ~. ~ l-.x (2.1) 

where 

R(X,p) = ~(X,p) 

(2.2) 

We note that the matrix Z(k, p) has constant eigenvalues 

AI,2 = 1:1:1$, ~=g3(gtg2)-)~ (2.3) 

(where 1131 < 1) by virtue of inequalities (1.6)) and has the polynomial commutant 

l 0 i~'2 / t '  g = (gl / g2)~ 

The matrix (2.2) is then factorized using the formulae [5] 

Z(Z ,p ) -  X÷ (Z,p)X_-t (k,p) (2.4) 

X ±l (~,, p) = q)±t (~, It){ / ch[~lt0., p)] + B(k, ~t) sh[~lt (X, P)I} 

Here I is the identity matrix and the functions ~0(X., p) and ~/(k, p) satisfy the two scalar equations 

~0+(Z,,p)~_-~(Z.,p)=A )4, L~L x (2.5) 

q+ (X,la)_ V_ (X,la) = x / y ' Z,~L x (2.6) 

the right-hand sides of which are determined by eigenvalues (2.3) 
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A=AIA 2 =1-62 ,  x = ~ l n ( A  1 /A2)=~ln l+13  

The solutions of problems (2.5) and (2.6) are found using a well-known method [6] and expressed 
by the formulae 

~0+(X,lX)= 1, ~0_ (Z.,Ix) = (1-132) -)~ (2.7) 

~± (~.,I.t) = iL~'/-t ln[(~, + T) / (:I:ilixl)] 

The bielastic constant E = (21t)-lln [(1 - 13)/(1 + 13)] which appears here has the same structure as in 
plane problems concerning interracial cracks in isotropic media [7]. However, the constant 13, which is 
defined by formula (2.3), takes the part of the Dundurs constant [8] in the case of transversely isotropic 
media. 

The factorization of the coefficient matrix of problem (2.1) therefore has the form 

R(A.,~t)=R+(X,IX)R_(k&t), R±0,.,IX)=(A.+ilixl) ~X~I(~,,Ix) (2.8) 

Equation (2.1) can then be represented in the form 

DR_ (k,g )F_ (~.,IX ) + {2- O~,lx ) = R~ l (~, IX )SF+ O~,IX )- Q+ (~., P) (2.9) 

where 

Q±(X'IX) = + 2-~/'~ R~t(a'g)SQ(a'ix)a-k dot (2.10) 

The contour L a is situated between the real axis and the contour Lx. 
Using the principle of analytic continuation, Liouville's theorem and the condition that the stresses 

diminish at infinity, we obtain the relation 

F÷ (X,,IX) = S -t R+ (L ~t)Q÷ (X,IX) 

Hence it follows that the stresses in the continuation of the crack have the form 

I'cxz(x,y,O)~ 1 ~  ] 
az(x,y,0)~ = S-tR+(k, ix)Q+(k,~t)e-°~dX cos Ixydix (2.11) 

3. We shall now construct the asymptotic forms of the stresses (2.11) whenx  --. +0. According to a 
theorem of the Abel type [6], they are determined by the asymptotic forms of the integrands when 
~ -.-~ oo. 

Using formulae (2.4), (2.7) and (2.8) as k --~ .o, we find 

' U l 
a - • 2 L~ ig ) ~ ig ) J = H~ig 

Then, by taking account of relation (2.10), applying the theorems on residues and using the value of 
the integral [9] 

i tV-ie-"dt= x-VF(v) (x>0)  

from (2.11), we arrive at the following representation of the stresses close to the crack tip 

1 . .  . iX \ ~ / t  
I,n(x,y,0)~i l . __++._ , ,  .+=S_,W±F(~+i£)!f<IX,I_~ ) cosixya~tx-~it 
[oAx,y,0)l I - ~-rn2 tq, 

S-I=diag(gl,g2). J'~'-~ g~l ~ (g)ll- 

(3.1) 
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Using formulae (2.4), (2.7) and (2.8), the elements of the column matrix.f(tt) can be expressed in 
terms of  the Fourier transform P_(a, tt) of the normal load 

(¢x + i~t) ~j 

f2(~t) = i~J chr~ ~ aP- (ct'~t) sin(f,ln a ; Y ) d c t  
L. 7 (a  + ila)~J 

We now introduce the functions 

r . ( y ) = F  +if. f , , ( Ix  coslxydp. (n=l ,2)  (3.2) 

The asymptotic forms of the stresses when x ~ +0  then take the form 

o z (x, y,O) ~ [Ki (y)cos(e in x ) -  K 2 (y)sin(eln x)]x -)~ 

x~ (x,y,0) ~ g[K t (y)sin(f,ln x) + K2(Y)COs(elnx)]x -~ 

The stress intensity factors KI(Y) and K2(y) are calculated from the formulae 

1 Kl(Y)=-~y[Rerl(y)+Imr2(y)], K2(y)= l-l-~[Rer2(y)-Imrl(y)] 

(3.3) 

(3.4) 

Thc three-dimensional stress fields in the neighbourhood of the crack tip located at the interface of 
two different transversely isotropic materials arc therefore oscillating. The asymptotic formulae (3.3) 
have the same structure as in the case of the plane [7] and axially symmetric [10] problems of interfacial 
cracks in isotropic media. 

4. As an example, we will now consider the case when point normal forces of magnitude P are applied 
to the crack edges on the x axis at a distance a from its tip, that is, p(x, y) = PS(x + a)~O') and, con- 
sequently, P_(~, ~t) = Pe-~/(2n). The function (3.2) can then be rcpresented in the form of single 
quadratures [1] 

r2(Y)= ph(~>l T[ | (~-  I)3/~ + igsin[~"(~)] X(~,y)d ~ + 2_~ X(l,y)th gg } 

h(¢)=2tt(}[-i£)ch~, i(~)=ln(~+ ~2~-1). X(~,y)=(y2 +a2~2)-~ +~/2 

(4 .1)  

Table 1 

Si02-Mg 
BaT~>s=Mg 
naT~03=Z~ 
Za-Mg 
Co--Cd 
Co=Zn 

Materi~ds a = 0,25 0,5 1 

7,909 1.437 2.806 0.4533 0.9949 O. 1409 
7.805 2.499 2,788 0.7896 0.9945 0.2457 
7.925 I. 192 2.808 0.3759 0,9949 O. 1168 
7.912 1.389 2.806 0.438 ! 0.9949 0,1362 
7.844 2.168 2.794 0.6848 0.9947 0.2130 
7.827 2.320 2.792 0.7329 0.9946 0.2280 
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The results of the calculations of the stress intensity factors using formulae (3.4) and (4.1) for several 
pairs of transversely isotropie materials and values of the parameter a = 0.25, 0.5 and 1.0 are presented 
in Table 1, where K~ = ~2"KI(O)/P, K*2 = ~K2(O)/P. 

The values of the elasticity constants from [11] were used in the calculations. The data presented in 
Tablc 1 enable us to conclude that, for all the pairs of materials which have been considered, as well 
as in the case of isotropic media [1], the magnitudes of K3 hardly differ from the stress intensity factor 
~2KI(O)[P = a -3/2 in the problem of a homogeneous isotropic space with a semi-infinite crack [12]. The 
coefficients KS take different values depending on the combination of materials, and increase when 
the distance from the point of application of the load to the fracture front decreases. 
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